skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bavlnka, Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 7, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Four commercial multiwalled carbon nanotubes with distinct lengths and diameters were subject to planetary ball milling to induce length reduction. The Burgio-Rojac energy model was employed to calculate the single impact energy and cumulative energy dissipated to the carbon nanotubes during milling. The ratio of sample mass to bead mass and the nanotube bulk density did not affect length reduction during grinding. The minimum impact energy barrier for carbon nanotube length reduction appeared directly proportional to nanotube diameter for parallel wall morphologies, although a nanotube sample with a cup-stacked wall morphology showed a much lower energy barrier. A normalized exponential equation relating carbon nanotube length and cumulative impact energy collapsed all data to a single exponential master curve described by the same scaling parameters, namely a pre-exponential term that includes the initial nanotube length and a scaling energy in the exponent. 
    more » « less
  4. The selective activation of renewable carboxylic acids could enable the formation of a variety of highly valuable renewable products, including surfactants, valuable dienes, and renewable hydrogen carriers. A kinetic study is performed to enhance understanding of the selective deoxygenation of carboxylic acid on promoted MoO3 at mild temperatures. Although several studies indicate that deoxygenation of oxygenated biomass-derived compounds on MoO3 occurs via a reverse Mars−van Krevelen mechanism, this study suggests that the deoxygenation of pentanoic acid (PA) on an oxygen vacancy can also be explained by a Langmuir−Hinshelwood mechanism. A detailed analysis of the experimental data indicates that the incorporation of Pt on MoO3 shifts the reaction order with respect to hydrogen from 1 to 0.5 at a low partial pressure of PA. We reveal that the rate-determining step (RDS) shifts upon the incorporation of Pt from H2 dissociation to H addition to adsorbed acid molecules. We further illustrate how the RDS can shift as a function of PA coverage. The inhibition effect of PA and its possible causes are discussed for both MoO3 and 0.05 wt % Pt/MoO3 catalysts. Here, we decouple promoter effects from the creation of highly active sites located at the Pt/MoO3 interface. The nature of the active site involved upon Pt incorporation is also studied by separating Pt from MoO3 at a controlled distance using carbon nanotubes as hydrogen bridges, confirming that the kinetically relevant role of Pt is to serve as a promoter of the MoO3. 
    more » « less